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Spin and density overlaps in the frustrated Ising lattice gas
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We perform large scale simulations of the frustrated Ising lattice gas, a three-dimensional lattice model of a
structural glass, using the parallel tempering technique. We evaluate the spin and density overlap distributions,
and the corresponding nonlinear susceptibilities, as a function of the chemical potential. We then evaluate the
relaxation functions of the spin and density self-overlap, and study the behavior of the relaxation times. The
results suggest that the spin variables undergo a transition very similar to the one of the Ising spin glass, while
the density variables do not show any sign of transition at the same chemical potential. It may be that the
density variables undergo a transition at a higher chemical potential, inside the phase where the spins are
frozen.
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[. INTRODUCTION tions of supercooled liquid6], shows the same pattern ob-
served inp-spin glasses and predicted for one-step RSB
In the last few years, a scenario has emerged for the themodels[7,8].
oretical description of structural glasses, in which the behav- Nevertheless, there are still some important differences
ior of glasses is characterized by two different temperatureietween structural glasses amespin models. Inp-spin
The higher temperaturg,, identified with the critical tem- glasses the relevant variables are the spin orientations, and
perature of the ideal mode-coupling thedfy, corresponds there is explicit quenched disorder in the Hamiltonian. On
to a crossover in the dynamical behavior of the glass, chathe other hand, in glasses the relevant variables are the par-
acterized by a single relaxation time fdr>T, and by a ticle positions, and there are no quenched interactions in the
two-step relaxation fom<T.. Below T., the free energy Hamiltonian, but the disorder is “self-generated” by the geo-
landscape in the phase space is split into an extensive nurmetrical hindrance that the particles exert on each other. Fur-
ber of valleys, separated by high barriers, and the dynamicermore p-spin glasses are mean-field models, while struc-
is separated in a fast motion inside the valley and a muciural glasses live in finite dimension. This means among
slower motion among different valleys. The number of val-other things that metastable stategpiapin models have in-
leys accessible to the system at the temperaluman be finite lifetime, and the dynamical transitiofy corresponds
expressed by the formul&=exgdNX(T)], whereN is the to a divergence of the relaxation times, while in finite dimen-
number of particles in the system aBqT) is the so-called sional models the barriers between free energy valleys can be
configurational entropy. The second temperaflie identi-  overcome by “hopping” processes, which restore ergodicity
fied with the Kauzmann temperatyi2] and the critical tem- even below the crossover temperatilite Furthermore, the
perature of the Adam and Gibbs thed8], is characterized p-spin model, if studied in three dimensions, loses many of
by the vanishing of the configurational entropy(T), and  its mean-field “glassy” properties, and shows a transition
the divergence of the relaxation time of the system with asimilar to the full replica symmetry breaking transition of
Vogel-Fulcher-Tamman law. Ising spin glasses, though with some remarkable differences
This picture is corroborated by the analogy with a class of 9].

mean-field models, the-spin glasses. These models undergo  The frustrated Ising lattice gas was introduced some time
a dynamical transition at a temperatdrg, where the phase ago as a simple finite dimensional lattice model of a glass-
space splits into an extensive number of metastable statef®rming liquid [10], in order to overcome some of the limi-
and the correlation functions show a singularity of the samdations ofp-spin models. Each lattice site carries two kinds
type of the one predicted by mode-coupling thept} At a  of variables, a lattice gas variabig=0,1, which represents
lower temperatureTs the number of metastable states be-the presence or absence of a particle onithesite, and an
comes nonextensive, that is, the configurational entropy varlsing spin variables; , which represents an internal degree of
ishes, and forT<T, the model shows a one-step replica freedom of the particle, such as, for example, the orientation
symmetry breaking. It has been long debated to what exterif @ nonsymmetrical molecule. The Hamiltonian of the
this analogy, between structural glasses prspin models, model is
can be pushed forward. In particular, one may ask if struc-
tural glasses exhibit some kind of replica symmetry breaking _ L ee\nn. _
(RSB), and if they are in the same universality class of T J% (1~ € SS)nin, ’ME,“ Mi- @
p-spin models or not. There are presently some results that
point in this direction. First principle computations of the where ¢;;==*1 are quenched variables. In the lindit- o,
equilibrium thermodynamics of simple fragile glasses seenthe first term of the Hamiltonian implies that two nearest
to be consistent with this pictuf®], and the off-equilibrium  neighbor sites can be simultaneously occupied by two par-
fluctuation-dissipation ratio, in molecular dynamics simula-ticles only if their spin variables satisfy the constraint
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€;SS;=1. Therefore if we identify the variables with the ~7r

orientation of a nonsymmetrical molecule, this condition S }

means that two molecules can be near only if their relative a 6r

orientation is appropriate. :
Being constituted essentially by diffusing particles, this 5§

model is suited to study quantities like the diffusion coeffi- :

cient, or the density autocorrelation functions, that are usu- 4 F

ally important in the study of liquids. Indeed, the model has Sk

proven to reproduce fairly well many features of supercooled :

glass-forming liquids, as for example the “cage effect.” At 5 b

low temperature and high density, the model shows a two i

step relaxation in the self-correlation function and in the ik

mean square displacement. Furthermore, being a finite di- :

mensional model, it is suitable to study activated processes, ot T INT R X

which are absent in mean-field models. -0 ° 0.5 Js
Although the model has been extensively studied by

Monte Carlo simulation$10] and in mean field11], there FIG. 1. Spin overlap distributio®(qs) for size 16 and chemi-

are still many unsolved problems, concerning the type ofal potentialsu=3.08, 4.12, 5.79, 10.69.
transition presented by the model. In particular, it would be
interesting to study if, in finite dimension, density and spintervals, in order to obtain the same swap rate between all the
variables become critical at the same point, and what kind o&djacent replicas. For each value of the chemical potential
replica symmetry breaking they show in the spin glass phasave simulated two replicas, in order to evaluate spin and den-

In this paper, we study the static and dynamical equilib-sity overlap. The thermalization of the systems was checked
rium properties of the model in the limi—o. We will by looking at the densities of the replicas, and waiting until
evaluate the equilibrium overlap distribution of spin and den-they did not show any sensible drift in time. The thermaliza-
sity variables, the equilibrium autocorrelation functions oftion time was greater than iGteps.
the self-overlaps, and the self-diffusion coefficient. After having thermalized the systems, at each parallel
tempering step we collected, for each pair of replicas at the
same chemical potential, the spin overlamg
=(1N)Z;S*'n*S’n? and the density overlap gq

We have simulated the frustrated Ising lattice gas by=(1/N)=;n®n?, where the superscripts and 3 refer to the
means of the parallel tempering techniqa@,13. With this  two replicas, and\ is the number of spins. We simulated the
technique one can thermalize the system at high chemicalystems for up to 10steps for the largest size, and checked
potential(high density, where the conventional Monte Carlo the symmetry of the spin overlap distribution to be sure that
algorithms suffer from extremely long autocorrelation times.the simulation time was sufficient. All the relevant quantities
One has to simulate several identical replicas of the systenwere averaged over 32 disorder realizations, and errors were
at different chemical potentialgio<---<u,, wWhere uy  evaluated from the fluctuations between different realiza-
corresponds to a low density and very short autocorrelatiotions.
time, andu, to the highest value of the chemical potential In Fig. 1 the equilibrium distribution of the spin overlap is
that one wants to investigate. Each step of the algorithnshown for the largest size 1Gand for different chemical
consists of the following two substeps: for each replica, perpotentials. For high chemical potential, the distribution de-
form a conventional Monte Carlo step with the given tem-velops two peaks, separated by a continuous plateau. This is
perature and chemical potential; for each pair of replicagypical of models with a continuous replica symmetry break-
with adjacent chemical potentials, try to swap them withing, like the Ising spin glass in three dimensions. Note that,
probability Pgyas=min[1,expBAuAn)], whereAn is the for the highest chemical potential, the distribution between
difference in the number of particles of the two replicas conthe two peaks is not a constant plateau, but is formed by
sidered, and\ i the difference of their chemical potentials. many small peaks. This can be due to the fact that, at high
If one chooses carefully the set of chemical potentials, thehemical potential or low temperature, averaging over more
the replicas will perform a random walk over the interval than 32 disorder realizations is needed to obtain a constant
[ 4o, mn]. The time needed to go fromg to u, and back plateau. The continuous replica symmetry breaking is asso-
again is calledergodic time and can be considered as the ciated with the divergence of the spin-glass susceptibility,
maximum autocorrelation time of the system. defined asysg=N(q?), where(- - -) denotes both the ther-

We have simulated the model fdr=o and =1, be- mal average for a given set of interactions and the average
tween the chemical potentia)sy,i,=1.69 andunm»,=10.69, over the disorder realizations. We have evaluatedfor the
for system sizes § 82, and 16. In the first case we have different sizes and chemical potential, and the result is shown
performed the simulation over 12 values of the chemicain Fig. 2. The behavior of the susceptibility confirms the
potential, in the second over 16 values, and in the third ovepresence of a thermodynamical second order transition. The
25 values. The exact values of the chemical potentials werexact value of the chemical potential at the transition
determined by an algorithm which tried to optimize the in-can be evaluated by looking at the Binder parameter

II. SPIN AND DENSITY OVERLAP DISTRIBUTIONS
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FIG. 2. Spin-glass susceptibilityss as a function of the chemi-
cal potential, for sizes% 8%, and 18. FIG. 4. Finite size scaling plot of the spin-glass susceptibility,
with u.=3.67. The exponents that give the best data collapse are
g=31(3-(g%/(g??), that is shown in Fig. 3. The curves 7=0 andv=1.

corresponding to the different sizes cross at the chemical . L , . . .
potential .= 3.67. Once we have located the transition, weSPin-glass susceptibility diverges. It is evident that this point

can try to evaluate the critical exponents, using the relatioffl0€S not correspond to a divergence of the nonlinear com-
L) =L2 Ty J LY¥(u— )], that should be valid pressibility. Therefore the divergence of the spin-glass sus-
xso(b. 1) Xs T Kol ceptibility is due to the fluctuations of spin variab®s and
around the transition, witlysd x] a universal curve. In Fig. not to the fluctuations of the density variables We have
4 the best fit is shown, obtained for the valugs 0 andv  g|so evaluated the Binder parameter of the density overlap
=1. Note that these exponents were obtained also bynot shown, which shows a nonmonotonic behavior, becom-
Campellon&-}t a|[9] in the three-dimensional version of the |ng negative for low density and positive at h|gh density,
p-spin model. They are different from the exponents found insimilar to what is observed in the finite-dimensiomaspin
the Ising spin glassy=1.7+0.3 andp=—0.35+0.05[14].  [9]. Indeed, the curves for different sizes do not cross at a
This suggests that the transition could belong to a differengjefinite point, so they cannot be used to localize the transi-
universality class with respect to the Ising spin glass. tion (if any) of the density variables.

We have then evaluated the equilibrium distribution of the It remains to be determined whether or not the density
density overlap, which is shown in Fig. 5 for the largest sizeyariables exhibit a transition not manifested by a divergence
and for different chemical potentials. The nonlinear COM-of the nonlinear Compressib”ity_ Note that for very high
pressibility x,=N((q3)—(dq)?) is shown in Fig. 6 as a chemical potential the equilibrium distribution of the density
function of the chemical potential. The arrow in Fig. 6 marksoverlap develops a secondary minimum. This could corre-
the point where the spin variables undergo the transition, aspond to a transition of a different kind, perhaps similar to
signaled by the crossing of the Binder parameter, and théhe one-step replica symmetry breaking transition of the

p-spin models.
1r
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FIG. 3. Binder parametey as a function of the chemical poten-
tial, for sizes 6, 8%, and 16. Inset: the point where the curves  FIG. 5. Density overlap distributiof®(q4) for size 16 and
cross, atu=3.67. chemical potentialg.=3.08, 4.12, 5.79, 10.69.
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FIG. 6. Nonlinear compressibilityc,, as a function of the FIG. 7. Relaxation functions of the spin self-overlap, for system
chemical potential, for sizes®6 8%, and 16. The arrow marks the size 26 and chemical potentialg.=2.583, 2.665, 2.747, 2.829,
point where spin variables display the transition. 2.911, 2.997, 3.083, 3.264, 3.456, 3.661. Continuous lines are fits

with the functionct™ exd —(t/7)”].
[ll. RELAXATION FUNCTIONS OF SPIN AND DENSITY _ L )
SELF-OVERLAP zation or finite size effects. A power law fit~|u— uo| ~?"
gives a dynamical exponent=7.4, slightly greater than the

The frustrated Ising lattice gas is known to have veryexponentz=6.0+0.8 found by Ogielski for the Ising spin
large relaxation times at high density or low temperatureglass.

[10]. Here we want to evaluate the relaxation times of In Fig. 9 the relaxation functions of the density self-
the spin self-overlap, defined asqg(t)=(1/Np) overlap are shown, for the same system size and chemical
XZ{(S(t")n(t")S(t+t")n;(t+1')), and the density self- potentials. Note that the relaxation times grow very slowly
overlap, defined asqq(t)=[1/N(p—qgH]1=i[(ni(t")n;(t  with respect to those of the spin self-overlap. This supports
+1'))— 59, where the averagé --) is done over the ref- the conclusion that the transition at.=3.67 does not in-
erence time’, p is the equilibrium mean density, am®is ~ Volve the density variables, . The latter probably undergo a
the equilibrium mean density overlap. These equilibriumtransition at a higher chemical potential, inside the phase
quantities are taken from the equilibrium simulations de-Where the spin variables are frozen.

scribed in the previous section. The self-overlaps are defined

so as to be equal to one &0, and go to zero fot— in IV. DIFFUSIVITY
the liquid phase. We have simulated the model for system _ ) o
size 28, and ten chemical potentials betweer 2.583 and We have simulated the model with a purely diffusive dy-

3.661, in the following manner. We start with an empty sys-namics, in the following way. We start with an empty lattice,
tem, with the interactions randomly chosen, thermalize at th&ith random interactions, and then slowly raise the chemical
given chemical potential for a given timkt, save the ob-
tained configuration, and then simulate the model saving the
self-overlapsgg(t) andqqy(t) with respect to the configura-
tion at the end of thermalization. Then we repeat the process
again with a different disorder configuration and thermal 104
noise. The thermalization tim#t is at least ten times larger i
than the time needed to the self-overlap to decay to the value
0.1, except for the three highest chemical potentials, for
which the thermalization time was shorter. The self-overlaps
were averaged over at least 100 different runs, and errors
were evaluated from the fluctuations between different runs.
In Fig. 7 the relaxation functions of the spin self-overlap
are shown. The solid lines are fit with the function -
ct™*exg —(/n?], proposed by Ogielski for the Ising spin .
glass[15]. The exponeng is nearly constant within the er- 05 06 07 0809 1 ()
rors for all the chemical potentials considered, and slightly ek
greater than 0.5, while the exponentaries between 0.2 for FIG. 8. Relaxation times of the spin self-overlap, as obtained
the lowest chemical potential to 0.1 for the highest. The corpy the fits of Fig. 7, for chemical potentials 2.58 <3.083. The
relation timesr are shown in Fig. 8, excluding the last three straight line is a fit with the functiofu— x| %", and u.=3.67
points, which are likely to suffer from insufficient thermali- fixed, which giveszv=7.4.

(1)
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FIG. 9. Relaxation functions of the density self-overlap, for the

same system size and chemical potentials of Fig. 7. I i ) i
FIG. 10. Diffusivity as a function of the chemical potential, for

potential, until a given density is reached. Then we switch t a system size 6 The solid line is a fit with the Arrhenius form
! ) =ae “*, Inset: Diffusivity as a function of the density. The solid

? ?urely (;lftfﬁswe (I:l_ynatrr?lcs, V\t"th cotntsherve_d nu(rjnber.tof Rzr'line is a fit with the power lavwD =a(po—p)?, with pg=0.681 and

Ic e.s’ an er.ma Ize he system at the given density. Altel _ 4 35 The arrows mark the point where the spin variables dis-
having thermalized the system, we collect the mean SQUaRay the transiti

. 2 . 3 . y the transition.
displacementr<(t)) of the particles as a function of time.
The long time regime of the mean square displacement is ofhe equilibrium autocorrelation functions of the spin overlap
the form(r?(t))=Dt, from which we extract the diffusion can be well fitted by an Ogielsky form, with a correlation
coefficientD. To each density, we associate a chemical polime diverging at the critical point. On the other hand, the
tential from the equilibrium relation between the two quan-density variables seem to be affected little by the transition,
tities. showing no divergence either in the nonlinear compressibil-

In Fig. 10 the diffusion coefficienD is shown for a sys- ¥, Or in the autocorrelation time.

tem size 18 as a function of the chemical potential. For high = 1he freezing of the model at the chemical potenyiglis
chemical potential, it can be well fitted by an Arrhenius therefore connected with a second order transition in the spin

form, D=ae **. Therefore the diffusion of the particles variables, more similar to the freezing of the Ising spin glass
seerﬁs to stop only at—, which corresponds td—0. than to the mode-coupling transition of structural glasses.

The arrow marks the point where the spin variables underg®n€ cannot exclude that the density variables undergo a

the spin-glass-like transition: apparently no anomaly in theP-spin-like tra_nsition at a higher d_ensity, chargcteriz_ed.by a
diffusivity shows up in correspondence of the transition. InONe-Step replica symmetry breaking and a discontinuity of

the inset, the diffusivity as a function of the density is Shown_the'Edwards-Andersgn parameter defined in terms of density
Note that foru—c the density goes to a maximum value variables. This fact is suggested by the development of a

pra=0.68. The diffusivity can be well fitted by a power law secondary peak in the density overlap distribution at very
Dm:aXa(po—p)V wherepy=0.681 andy—=1.38 high chemical potential, as well as by the measurements of

the off-equilibrium fluctuation-dissipation ratip16], but

more work is needed to clarify this point.
V. CONCLUSIONS
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