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Spin and density overlaps in the frustrated Ising lattice gas

Antonio de Candia and Antonio Coniglio
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~Received 25 June 2001; published 21 December 2001!

We perform large scale simulations of the frustrated Ising lattice gas, a three-dimensional lattice model of a
structural glass, using the parallel tempering technique. We evaluate the spin and density overlap distributions,
and the corresponding nonlinear susceptibilities, as a function of the chemical potential. We then evaluate the
relaxation functions of the spin and density self-overlap, and study the behavior of the relaxation times. The
results suggest that the spin variables undergo a transition very similar to the one of the Ising spin glass, while
the density variables do not show any sign of transition at the same chemical potential. It may be that the
density variables undergo a transition at a higher chemical potential, inside the phase where the spins are
frozen.
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I. INTRODUCTION

In the last few years, a scenario has emerged for the
oretical description of structural glasses, in which the beh
ior of glasses is characterized by two different temperatu
The higher temperatureTc , identified with the critical tem-
perature of the ideal mode-coupling theory@1#, corresponds
to a crossover in the dynamical behavior of the glass, c
acterized by a single relaxation time forT.Tc and by a
two-step relaxation forT,Tc . Below Tc , the free energy
landscape in the phase space is split into an extensive n
ber of valleys, separated by high barriers, and the dynam
is separated in a fast motion inside the valley and a m
slower motion among different valleys. The number of v
leys accessible to the system at the temperatureT can be
expressed by the formulaN5exp@NS(T)#, whereN is the
number of particles in the system andS(T) is the so-called
configurational entropy. The second temperatureTK , identi-
fied with the Kauzmann temperature@2# and the critical tem-
perature of the Adam and Gibbs theory@3#, is characterized
by the vanishing of the configurational entropyS(T), and
the divergence of the relaxation time of the system with
Vogel-Fulcher-Tamman law.

This picture is corroborated by the analogy with a class
mean-field models, thep-spin glasses. These models under
a dynamical transition at a temperatureTd , where the phase
space splits into an extensive number of metastable st
and the correlation functions show a singularity of the sa
type of the one predicted by mode-coupling theory@4#. At a
lower temperatureTs the number of metastable states b
comes nonextensive, that is, the configurational entropy v
ishes, and forT,Ts the model shows a one-step repli
symmetry breaking. It has been long debated to what ex
this analogy, between structural glasses andp-spin models,
can be pushed forward. In particular, one may ask if str
tural glasses exhibit some kind of replica symmetry break
~RSB!, and if they are in the same universality class
p-spin models or not. There are presently some results
point in this direction. First principle computations of th
equilibrium thermodynamics of simple fragile glasses se
to be consistent with this picture@5#, and the off-equilibrium
fluctuation-dissipation ratio, in molecular dynamics simu
1063-651X/2001/65~1!/016132~6!/$20.00 65 0161
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tions of supercooled liquids@6#, shows the same pattern ob
served in p-spin glasses and predicted for one-step R
models@7,8#.

Nevertheless, there are still some important differen
between structural glasses andp-spin models. Inp-spin
glasses the relevant variables are the spin orientations,
there is explicit quenched disorder in the Hamiltonian. O
the other hand, in glasses the relevant variables are the
ticle positions, and there are no quenched interactions in
Hamiltonian, but the disorder is ‘‘self-generated’’ by the ge
metrical hindrance that the particles exert on each other.
thermore,p-spin glasses are mean-field models, while str
tural glasses live in finite dimension. This means amo
other things that metastable states inp-spin models have in-
finite lifetime, and the dynamical transitionTd corresponds
to a divergence of the relaxation times, while in finite dime
sional models the barriers between free energy valleys ca
overcome by ‘‘hopping’’ processes, which restore ergodic
even below the crossover temperatureTc . Furthermore, the
p-spin model, if studied in three dimensions, loses many
its mean-field ‘‘glassy’’ properties, and shows a transiti
similar to the full replica symmetry breaking transition
Ising spin glasses, though with some remarkable differen
@9#.

The frustrated Ising lattice gas was introduced some t
ago as a simple finite dimensional lattice model of a gla
forming liquid @10#, in order to overcome some of the lim
tations ofp-spin models. Each lattice site carries two kin
of variables, a lattice gas variableni50,1, which represents
the presence or absence of a particle on thei th site, and an
Ising spin variableSi , which represents an internal degree
freedom of the particle, such as, for example, the orienta
of a nonsymmetrical molecule. The Hamiltonian of th
model is

H5J(̂
i j &

~12e i j SiSj !ninj2m(
i

ni , ~1!

wheree i j 561 are quenched variables. In the limitJ→`,
the first term of the Hamiltonian implies that two neare
neighbor sites can be simultaneously occupied by two p
ticles only if their spin variables satisfy the constrai
©2001 The American Physical Society32-1
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e i j SiSj51. Therefore if we identify the variablesSi with the
orientation of a nonsymmetrical molecule, this conditi
means that two molecules can be near only if their rela
orientation is appropriate.

Being constituted essentially by diffusing particles, th
model is suited to study quantities like the diffusion coe
cient, or the density autocorrelation functions, that are u
ally important in the study of liquids. Indeed, the model h
proven to reproduce fairly well many features of supercoo
glass-forming liquids, as for example the ‘‘cage effect.’’ A
low temperature and high density, the model shows a
step relaxation in the self-correlation function and in t
mean square displacement. Furthermore, being a finite
mensional model, it is suitable to study activated proces
which are absent in mean-field models.

Although the model has been extensively studied
Monte Carlo simulations@10# and in mean field@11#, there
are still many unsolved problems, concerning the type
transition presented by the model. In particular, it would
interesting to study if, in finite dimension, density and sp
variables become critical at the same point, and what kind
replica symmetry breaking they show in the spin glass ph

In this paper, we study the static and dynamical equi
rium properties of the model in the limitJ→`. We will
evaluate the equilibrium overlap distribution of spin and de
sity variables, the equilibrium autocorrelation functions
the self-overlaps, and the self-diffusion coefficient.

II. SPIN AND DENSITY OVERLAP DISTRIBUTIONS

We have simulated the frustrated Ising lattice gas
means of the parallel tempering technique@12,13#. With this
technique one can thermalize the system at high chem
potential~high density!, where the conventional Monte Carl
algorithms suffer from extremely long autocorrelation time
One has to simulate several identical replicas of the syst
at different chemical potentialsm0,•••,mn , where m0
corresponds to a low density and very short autocorrela
time, andmn to the highest value of the chemical potent
that one wants to investigate. Each step of the algorit
consists of the following two substeps: for each replica, p
form a conventional Monte Carlo step with the given te
perature and chemical potential; for each pair of repli
with adjacent chemical potentials, try to swap them w
probability Pswap5min@1,exp(2bDmDn)#, whereDn is the
difference in the number of particles of the two replicas co
sidered, andDm the difference of their chemical potential
If one chooses carefully the set of chemical potentials, t
the replicas will perform a random walk over the interv
@m0 ,mn#. The time needed to go fromm0 to mn and back
again is calledergodic time, and can be considered as th
maximum autocorrelation time of the system.

We have simulated the model forJ5` and b51, be-
tween the chemical potentialsmmin51.69 andmmax510.69,
for system sizes 63, 83, and 103. In the first case we have
performed the simulation over 12 values of the chemi
potential, in the second over 16 values, and in the third o
25 values. The exact values of the chemical potentials w
determined by an algorithm which tried to optimize the
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tervals, in order to obtain the same swap rate between al
adjacent replicas. For each value of the chemical poten
we simulated two replicas, in order to evaluate spin and d
sity overlap. The thermalization of the systems was chec
by looking at the densities of the replicas, and waiting un
they did not show any sensible drift in time. The thermaliz
tion time was greater than 106 steps.

After having thermalized the systems, at each para
tempering step we collected, for each pair of replicas at
same chemical potential, the spin overlapqs

5(1/N)( iSi
ani

aSi
bni

b and the density overlap qd

5(1/N)( ini
ani

b , where the superscriptsa andb refer to the
two replicas, andN is the number of spins. We simulated th
systems for up to 107 steps for the largest size, and check
the symmetry of the spin overlap distribution to be sure t
the simulation time was sufficient. All the relevant quantiti
were averaged over 32 disorder realizations, and errors w
evaluated from the fluctuations between different reali
tions.

In Fig. 1 the equilibrium distribution of the spin overlap
shown for the largest size 103 and for different chemical
potentials. For high chemical potential, the distribution d
velops two peaks, separated by a continuous plateau. Th
typical of models with a continuous replica symmetry brea
ing, like the Ising spin glass in three dimensions. Note th
for the highest chemical potential, the distribution betwe
the two peaks is not a constant plateau, but is formed
many small peaks. This can be due to the fact that, at h
chemical potential or low temperature, averaging over m
than 32 disorder realizations is needed to obtain a cons
plateau. The continuous replica symmetry breaking is as
ciated with the divergence of the spin-glass susceptibil
defined asxSG5N^qs

2&, where^•••& denotes both the ther
mal average for a given set of interactions and the aver
over the disorder realizations. We have evaluatedxSG for the
different sizes and chemical potential, and the result is sho
in Fig. 2. The behavior of the susceptibility confirms th
presence of a thermodynamical second order transition.
exact value of the chemical potential at the transiti
can be evaluated by looking at the Binder parame

FIG. 1. Spin overlap distributionP(qs) for size 103 and chemi-
cal potentialsm53.08, 4.12, 5.79, 10.69.
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g5 1
2 (32^qs

4&/^qs
2&2), that is shown in Fig. 3. The curve

corresponding to the different sizes cross at the chem
potentialmc53.67. Once we have located the transition,
can try to evaluate the critical exponents, using the rela
xSG(L,m)5L22hx̃SG@L1/n(m2mc)#, that should be valid
around the transition, withx̃SG@x# a universal curve. In Fig
4 the best fit is shown, obtained for the valuesh50 andn
51. Note that these exponents were obtained also
Campelloneet al. @9# in the three-dimensional version of th
p-spin model. They are different from the exponents found
the Ising spin glass,n51.760.3 andh520.3560.05 @14#.
This suggests that the transition could belong to a differ
universality class with respect to the Ising spin glass.

We have then evaluated the equilibrium distribution of t
density overlap, which is shown in Fig. 5 for the largest s
and for different chemical potentials. The nonlinear co
pressibility knl5N(^qd

2&2^qd&
2) is shown in Fig. 6 as a

function of the chemical potential. The arrow in Fig. 6 mar
the point where the spin variables undergo the transition
signaled by the crossing of the Binder parameter, and

FIG. 2. Spin-glass susceptibilityxSG as a function of the chemi
cal potential, for sizes 63, 83, and 103.

FIG. 3. Binder parameterg as a function of the chemical poten
tial, for sizes 63, 83, and 103. Inset: the point where the curve
cross, atm53.67.
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spin-glass susceptibility diverges. It is evident that this po
does not correspond to a divergence of the nonlinear c
pressibility. Therefore the divergence of the spin-glass s
ceptibility is due to the fluctuations of spin variablesSi , and
not to the fluctuations of the density variablesni . We have
also evaluated the Binder parameter of the density ove
~not shown!, which shows a nonmonotonic behavior, beco
ing negative for low density and positive at high densi
similar to what is observed in the finite-dimensionalp spin
@9#. Indeed, the curves for different sizes do not cross a
definite point, so they cannot be used to localize the tra
tion ~if any! of the density variables.

It remains to be determined whether or not the dens
variables exhibit a transition not manifested by a diverge
of the nonlinear compressibility. Note that for very hig
chemical potential the equilibrium distribution of the dens
overlap develops a secondary minimum. This could cor
spond to a transition of a different kind, perhaps similar
the one-step replica symmetry breaking transition of
p-spin models.

FIG. 4. Finite size scaling plot of the spin-glass susceptibil
with mc53.67. The exponents that give the best data collapse
h50 andn51.

FIG. 5. Density overlap distributionP(qd) for size 103 and
chemical potentialsm53.08, 4.12, 5.79, 10.69.
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III. RELAXATION FUNCTIONS OF SPIN AND DENSITY
SELF-OVERLAP

The frustrated Ising lattice gas is known to have ve
large relaxation times at high density or low temperat
@10#. Here we want to evaluate the relaxation times
the spin self-overlap, defined asqs(t)5(1/Nr)
3( i^Si(t8)ni(t8)Si(t1t8)ni(t1t8)&, and the density self-
overlap, defined asqd(t)5@1/N(p2qd

eq)#( i@^ni(t8)ni(t
1t8)&2qd

eq#, where the averagê•••& is done over the ref-
erence timet8, r is the equilibrium mean density, andqd

eq is
the equilibrium mean density overlap. These equilibriu
quantities are taken from the equilibrium simulations d
scribed in the previous section. The self-overlaps are defi
so as to be equal to one att50, and go to zero fort→` in
the liquid phase. We have simulated the model for sys
size 203, and ten chemical potentials betweenm52.583 and
3.661, in the following manner. We start with an empty sy
tem, with the interactions randomly chosen, thermalize at
given chemical potential for a given timeDt, save the ob-
tained configuration, and then simulate the model saving
self-overlapsqs(t) and qd(t) with respect to the configura
tion at the end of thermalization. Then we repeat the proc
again with a different disorder configuration and therm
noise. The thermalization timeDt is at least ten times large
than the time needed to the self-overlap to decay to the v
0.1, except for the three highest chemical potentials,
which the thermalization time was shorter. The self-overla
were averaged over at least 100 different runs, and er
were evaluated from the fluctuations between different ru

In Fig. 7 the relaxation functions of the spin self-overl
are shown. The solid lines are fit with the functio
ct2x exp@2(t/t)b#, proposed by Ogielski for the Ising spi
glass@15#. The exponentb is nearly constant within the er
rors for all the chemical potentials considered, and sligh
greater than 0.5, while the exponentx varies between 0.2 fo
the lowest chemical potential to 0.1 for the highest. The c
relation timest are shown in Fig. 8, excluding the last thre
points, which are likely to suffer from insufficient thermal

FIG. 6. Nonlinear compressibilityknl as a function of the
chemical potential, for sizes 63, 83, and 103. The arrow marks the
point where spin variables display the transition.
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zation or finite size effects. A power law fitt;um2mcu2zn

gives a dynamical exponentz57.4, slightly greater than the
exponentz56.060.8 found by Ogielski for the Ising spin
glass.

In Fig. 9 the relaxation functions of the density se
overlap are shown, for the same system size and chem
potentials. Note that the relaxation times grow very slow
with respect to those of the spin self-overlap. This suppo
the conclusion that the transition atmc53.67 does not in-
volve the density variablesni . The latter probably undergo
transition at a higher chemical potential, inside the ph
where the spin variables are frozen.

IV. DIFFUSIVITY

We have simulated the model with a purely diffusive d
namics, in the following way. We start with an empty lattic
with random interactions, and then slowly raise the chem

FIG. 7. Relaxation functions of the spin self-overlap, for syste
size 203 and chemical potentialsm52.583, 2.665, 2.747, 2.829
2.911, 2.997, 3.083, 3.264, 3.456, 3.661. Continuous lines are
with the functionct2x exp@2(t/t)b#.

FIG. 8. Relaxation timest of the spin self-overlap, as obtaine
by the fits of Fig. 7, for chemical potentials 2.583<m<3.083. The
straight line is a fit with the functionum2mcu2zn, and mc53.67
fixed, which giveszn57.4.
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potential, until a given density is reached. Then we switch
a purely diffusive dynamics, with conserved number of p
ticles, and thermalize the system at the given density. A
having thermalized the system, we collect the mean squ
displacement̂ r 2(t)& of the particles as a function of time
The long time regime of the mean square displacement i
the form ^r 2(t)&5Dt, from which we extract the diffusion
coefficientD. To each density, we associate a chemical
tential from the equilibrium relation between the two qua
tities.

In Fig. 10 the diffusion coefficientD is shown for a sys-
tem size 163 as a function of the chemical potential. For hig
chemical potential, it can be well fitted by an Arrheni
form, D5ae2am. Therefore the diffusion of the particle
seems to stop only atm→`, which corresponds toT→0.
The arrow marks the point where the spin variables unde
the spin-glass-like transition: apparently no anomaly in
diffusivity shows up in correspondence of the transition.
the inset, the diffusivity as a function of the density is show
Note that form→` the density goes to a maximum valu
rmax.0.68. The diffusivity can be well fitted by a power la
D5a(r02r)g, wherer050.681 andg51.38.

V. CONCLUSIONS

We have studied the static and dynamical properties of
frustrated Ising lattice gas at equilibrium. A spin-glass-li
transition is found in the spin variables, signaled by t
crossing of the Binder parameter, the divergence of the n
linear susceptibility, and the development of a continuo
replica symmetry breaking in the spin overlap distributio

FIG. 9. Relaxation functions of the density self-overlap, for t
same system size and chemical potentials of Fig. 7.
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The equilibrium autocorrelation functions of the spin overl
can be well fitted by an Ogielsky form, with a correlatio
time diverging at the critical point. On the other hand, t
density variables seem to be affected little by the transiti
showing no divergence either in the nonlinear compressi
ity, or in the autocorrelation time.

The freezing of the model at the chemical potentialmc is
therefore connected with a second order transition in the s
variables, more similar to the freezing of the Ising spin gla
than to the mode-coupling transition of structural glass
One cannot exclude that the density variables underg
p-spin-like transition at a higher density, characterized b
one-step replica symmetry breaking and a discontinuity
the Edwards-Anderson parameter defined in terms of den
variables. This fact is suggested by the development o
secondary peak in the density overlap distribution at v
high chemical potential, as well as by the measurement
the off-equilibrium fluctuation-dissipation ratio@16#, but
more work is needed to clarify this point.
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